
Efficient Training Strategies for
Deep Neural Network Language Models

Holger Schwenk Fethi Bougares Loı̈c Barrault
LIUM, University of Le Mans

72085 Le Mans cedex, FRANCE
Holger.Schwenk@lium.univ-lemans.fr

Abstract

Many works have shown that neural network language models consistently
achieve significant improvements in applications like speech recognition and sta-
tistical machine translation. However, little research is devoted to explore optimal
training strategies. This paper presents an extensive study on the best-practice to
train large neural network language models on a corpus of more than 5.5 billion
words. We provide solutions to questions like: how to train a neural network on so
many examples using the back-propagation algorithm and data selection ? Is care-
ful initialization important ? How to speed-up training ? Can we benefit from deep
architectures ? Our best neural network language model can be trained in less than
40 hours on a GPU card and achieves a 25% perplexity reduction. An important
finding is that deep architectures systematically achieve better translation quality
than shallow ones. We also investigate training of feed-forward architectures on
context sizes of more than 30 words. By these means, we aim at achieving an
“unlimited history” similar to recurrent architectures.

1 Introduction

Language models play a very important role in many natural language processing applications, in
particular large vocabulary speech recognition (LVCSR) and statistical machine translation (SMT).
For those applications, and many others, it was considered that back-off n-gram language models
were the state-of-art when large amounts of training data are available. Neural network language
models (NNLM), also called continuous space language models (CSLM), were introduced thirteen
years ago [4]. During the last years, NNLMs became very popular and it was confirmed in many
studies that they systematically outperform back-off n-gram models by a significant margin in SMT
and LVCSR.

In the neural network community it is common to carefully optimize the meta-parameters of neural
networks and it is well known that optimal training can have an important impact on the perfor-
mance, in particular with deep architectures, e.g. [3, 12]. We are not aware of on extensive study on
the optimal training of the neural networks used in an CSLM, often default parameters are used and
they are trained on a subset of the potentially available data only. In this paper we will show that
careful training of the neural network, and the use of deep architectures, can significantly improve
the performance of an CSLM.

The goal of a statistical language modeling is to estimate prior probabilities of word strings
w = w1, . . . , wL:

P (w1, . . . , wL) =

L∏
i=1

P (wi|w1, . . . , wi−1) ≈
L∏

i=1

P (wi|wi−n+1, . . . , wi−1) (1)

1

It was considered unfeasible to estimate these probabilities for very long contexts since many events
are never observed in the training data and the size of memory-based models increases very quickly.
Therefore, we usually make the approximation to limit the context to the n − 1 preceding words
(see Eqn 1), the so-called n-gram back-off language models (LM). To simplify notation, we have
not considered border conditions (in practice, the first probability is an unigram, then a bigram and
so on). The main challenge in n-gram language modeling is how to estimate the conditional prob-
abilities for all possible word sequences, in particular those not observed in the training data. The
standard techniques are backing-off to shorter contexts, interpolation, redistribution of probability
mass and smoothing. A comparison of those technique can be found in [6]

2 Continuous space language models

The main drawback of back-off n-gram LMs is the fact that the probabilities are estimated in a
discrete space. This prevents any kind of interpolation in order to estimate LM probabilities of
un-observed n-grams.

projection
layer hidden

layer

output
layer

N

P

H

N

input

projections
shared

o_i

probability estimation

Neural Network

discrete
representation:

indices in wordlist

continuous
representation:

P dimensional vectors

LM probabilities
for all words

Figure 1: Architecture of the CSLM.

In order to attack this problem, it was pro-
posed to project the words into a contin-
uous space and to perform the estimation
task in this space. The projection as well
as the estimation can be jointly performed
by a multi-layer neural network [4].

The basic architecture of this approach is
shown in Figure 1. In the initial model a
standard fully-connected multi-layer per-
ceptron with two hidden layers is used.
The inputs to the neural network are the
indices of the n−1 previous words in the
vocabulary hj=wj−n+1, . . . , wj−2, wj−1

and the outputs are the posterior proba-
bilities of all words of the vocabulary:
P (wj = i|hj),∀i ∈ [1, N], where N is
the size of the vocabulary. The input uses
the so-called 1-of-n coding, i.e., the ith
word of the vocabulary is coded by setting
the ith element of the vector to 1 and all
the other elements to 0. The ith line of the
N ×P dimensional projection matrix cor-
responds to the continuous representation
of the ith word (1st hidden layer). The remaining part of the network estimates the probabilities of
all words in the vocabulary given that context. Usually one tanh hidden and a softmax output layer
are used. In this paper, we will investigate much deeper architectures. Training is performed with
standard back-prop minimizing a cross-entropy error and a weight decay regularizer.

The CSLM has a much higher complexity than a back-off LM, mainly because of the high dimension
of the output layer. One solution is to limit the size of the output layer to the most frequent words,
called short-list, the other ones being predicted by a standard back-off LM [21]. All the words are
still considered at the input layer. Other solutions are classes [15], an hierarchical decomposition
[11] or noise contrastive estimation [16]. It is important to note that the CSLM is still an n-gram
approach, but the notion of backing-off to shorter contexts does not exist any more. The model can
provide probability estimates for any possible n-gram. It also has the advantage that the complexity
only slightly increases for longer context windows. A detailed description of the CSLM can be
found in [21].

During the last years, several extensions of the basic architecture were proposed in the literature.
Given the fact that we want to estimate the probability of the next word given all the preceding
ones, see Eqn 1, recurrent architectures seem to be particularly appropriate. This was investigated
in the literature. T. Mikolov introduced recurrent neural networks, [14] and follow-up work. More
recently, LSTM were also used for language modeling, e.g. [26]. From our point of view, it is still

2

an open question whether these recurrent architectures outperform feed-forward networks. In some
work, better performance was observed, e.g. [13, 25], while in other studies no significant difference
was observed, e.g. [10]. For many languages, huge amounts of training data are available, usually
billions of words. After our experience, taking advantage of all data, using appropriate training
techniques, has an important impact on the performance of the neural network LM. In general, it is
more challenging to train recurrent architectures on large amounts of data. For these reasons, we
investigate feed-forward architectures only in this paper. However, we will show in section 5 that
standard feed-forward architectures can very efficiently learn long distance dependencies.

3 Statistical machine translation

The standard metric to evaluate the quality of an LM is to report perplexity on some test set. Per-
plexity measures the ability of the model to predict the next word in the word sequence. The smaller
the value, the less uncertainty the model has, the better it is. We also integrate the CSLM into a
full SMT system. Suppose we want to translate a sentence in the source language s = s1 . . . si to a
sentence in the target language t = t1 . . . tj . Then, the fundamental equation of SMT is:

t∗ = argmax
t
P (t|s) = argmax

t

P (s|t)P (t)
P (s)

= argmax
t
P (s|t)P (t) (2)

The translation model P (s|t) is estimated from bilingual sentence aligned data and the language
model P (t) from monolingual data in the target language. This equation can be generalized in order
to introduce additional models hi, in a log-linear framework:

t∗ = argmax
t
P (t|s) = argmax

t
{exp(

∑
i

λihi(t, s))} (3)

The coefficients λi are numerically optimized to maximize a scoring function on a development set
[18]. In this work, we add an additional model, the CSLM. In practice, we first create with the
baseline system a list of the 1000 most likely translations of each source sentence. For each of
these hypothesis, we calculate a score with the CSLM, a new global score is calculated according
to equation 3 and the best scoring hypothesis is extracted. We use the freely available Moses SMT
toolkit [9].

Many automatic quality measures were proposed in the SMT community, the most popular being
BLEU [19] and TER [23]. Both compare the hypothesis to a reference translation. BLEU is an
n-gram precision metric, i.e. higher values are better, while TER is an error rate, i.e. lower values
are better. TER is an adaptation of the well known word error rate (which counts substitutions,
insertion and deletions of words) to machine translation. One of major challenges in the evaluation
of machine translation is the fact that word order is usually not preserved. Therefore, TER also
consider shifts of word sequences. Our main metric is the combination of both, (TER-BLEU)/2,
since we aim at simultaneously maximizing BLEU and minimizing TER.

4 Efficient training of deep architectures

In this first part, we report results on a large SMT task, translating from Arabic into English. This
research is performed in the framework of the DARPA BOLT project.1. This projects aims in obtain-
ing major breakthroughs in the automatic translation of dialectal Arabic and informal Chinese into
English. Therefore the LM must be able to deal with phenomena of this genre: repetitions, errors in
grammar and word choice, unusual expressions, etc. In the next two sections, we first describe the
available resources for this tasks and the procedure to create the reference back-off LM.

4.1 Task and resources

Table 1 summarizes the resources available to train the LM. In total, we have more than 5.6 billion
words out of which only a very small fraction can be considered as in-domain, i.e. of informal
genre. The translation model of an SMT system is trained on parallel data, i.e. text in the source

1Broad Operational Language Translation

3

Training data genre words subset
Parallel informal 7.1M 7.1M
(target side) mixed 178M 19.7M

Monolingual news 4 800M 173M
informal 666M 33.3M

Total 5 651M 233M

Metric Back-off 4-gram 7-gram CSLM
px=76.3 px=61.6

BLEU 26.64 27.22
TER 58.38 57.94
TB2 15.87 15.36

Table 1: Available corpora for language modeling (left) and performance of the baseline systems on
the test set (right). TB2 stands for (TER-BLEU)/2.

language and their translations. The target side of these corpora can be used for language modeling
(parallel in Table 1). This is complemented by huge collections of news texts and informal forum
discussions. All English data is lower-cased since the capitalization is done by a post-processing
module (not discussed here).

Data selection

It is well known that it is sub-optimal to directly build the LM on the concatenation of the individual
corpora – instead the relevance of each source should be taken into consideration. For this reason,
we build a back-off LM on each corpus and then interpolate and merge them into one final LM.
The interpolation coefficients are estimated using an EM procedure to minimize the perplexity on
the development data.2 We use modified Kneser-Ney smoothing which is reported to consistently
obtain the best performance. The SRILM toolkit was used for these tasks [24]. Building LMs on all
the available data (5.6G words) is a computational challenge and leads to huge models (in the order
of 40GB). Recent work has shown that it is actually better to select a subset of the most relevant
data. We applied the method presented in [17]. The main idea is to focus on sentences which are
close to the domain of the task, using a criterion based on perplexity difference. In our case, about
230M words were selected out of a pool of 5.6G. An 4-gram back-off trained on that subset achieves
a perplexity of 76.3. The back-off LM trained on all the 5.6G words achieves the same perplexity.
We also build a 5-gram back-off LM using the same procedure. It’s perplexity is 75.7 – only a minor
improvement.

4.2 Optimizing the meta-parameters of the CSLM

All our CSLMs are trained on exactly the same subset of 233M words than the reference back-off
LM. This is substantially larger than in many other application of NNLMs. The networks are trained
for 20 epochs consisting of about 30M randomly sampled examples at each epoch.

Network initialization

Proper initialization of the parameters is known to be quite important, in particular with deep ar-
chitectures. Indeed, we were not able to properly train networks with many hidden layers using a
simple random initialization in the range [−0.1, 0.1], independently of the size of the layers. In our
case, scaling the random values for each layer in function of its input and output dimensions [7] has
shown to be very useful to train deep architectures. The main idea is to scale the random values
separately for each layer in function of its input and output dimensions (Equation 4).

range = ±

√
6

input dim + output dim
(4)

Batch mode and learning rate

We first tempted to speed-up training by processing several examples at once, also known as mini
batch. Values between 128 and 2048 were analyzed. Larger values result in faster processing on
GPUs (twice as fast for 2048 w/r to 128), but the networks need more epochs to converge. The

2this is performed by the script compute-best-mix in the SRILM toolkit.

4

best compromise was a batch size of 256. With this setting, the overall training takes about 40h on
an Nvidia Tesla GPU K20x GPU. The initial learning rate was set to 0.06 which was scaled by the
square root of the batch size. The learning rate decreases with the epochs.

Dealing with short n-grams

The CSLM can be easily trained on contexts longer than the usual 4-grams since its complexity
only slowly increases. For instance, in [22] improvements are reported when increasing the context
from 3 to 6 words. However, the input of a standard CSLM is of constant dimension, i.e. it is only
trained on 7-grams and can’t directly estimate the probabilities of shorter n-grams. This variable
length problem is of course nicely addressed by recurrent neural network LMs [14], but it can be
also handled with fixed-size feed-forward multi-layer networks. For this, we introduced a special
token, NULL WORD, to indicate shorter n-grams. These are used during training and inference. In
our case, about 24% of the n-grams during training, and 21% during n-best list rescoring have a
shorter context. Handling these ones by the CSLM lead to a reduction of the perplexity by almost
two points.

Network architecture

One of the most important meta-parameter of neural networks is probably its architecture: should
we use one or more hidden layers ? How many neurons per layer ? During the last years, there is
a large body of research showing that deep architectures, i.e. with many hidden layers, demonstrate
improved performance compared to shallow architectures for many tasks, e.g. [2, 8].

We are only aware of one research studying deep architectures for NNLMS. Deep neural networks
were shown to outperform shallow architectures for a LVSCR task [1]. However, only a very small
corpus was used to train the neural networks (about 23.5M words). In the following, we provide
an extensive analysis of different neural network architectures, ranging from one to four hidden
layers. For each one we give the perplexity on the development data, the number of parameters,3
the time to perform one epoch through the training data, and the BLEU and TER score on our test
set (22k words). We consider the number of hidden layers used for the probability estimation
task, not the number of total layers, i.e. the projection layer itself is not included. The network
depicted in Figure 1 is therefore considered to have one hidden layer. In preliminary experiments,
we analyzed different sizes of the short list: 8k, 16k and 32k. A value of 8k has an negative impact
on the performance, but we observed only minor differences between 16k and 32k. Therefore, all
following experiments were done with a short list of 16k.

From Table 2, it can be clearly seen that networks with only one hidden layer perform badly, even
when the dimension of this hidden layer is substantially increased. The large network with one
2048-dimensional hidden layer performs worse than a network with two hidden layers and half of
the parameters. The perplexities are almost 2.5 points lower when two hidden layers are used. How-
ever, increasing the size of the layers has no notable impact – the neural network is not able to
efficiently use this additional capacity: the architecture 3072-1536 has twice as many parame-
ters than the network 1024-1024, but achieves identical performance with respect to perplexity
and translation quality. We did not observe a notable change in the perplexity when three hidden
layers are used for the probability estimation task. However, those networks perform better when
integrated into the statistical machine translation system: the combined metric (TER-BLEU)/2 de-
creases from 14.82 (architecture 1024-1024) to 14.65 (architecture 768-768-768), despite the
fact that the deep architecture has 23% less parameters. Again, increasing the size of the layers
has not significant impact. Using four hidden layers for the probability estimation task does not
bring additional improvements. Note that we only use standard back-propagation training in these
experiments – more elaborated techniques like layer-wise pre-training may be more appropriate for
this type of architectures. The best CSLM uses a 320-dimensional projection layer and three hidden
layers of dimension 768 for the probability estimation task. It achieves a reduction in perplexity by
25% relative with respect to the best back-off LM we were able to build (76.3→57.4). Note that we
do not interpolate the CSLM with the back-off LM to achieve this value. When using this CSLM
to rescore 1000-best lists, we achieve an BLEU score of 27.96 and an TER of 57.27 on the test

3We do not include the parameters needed for the projection layer since this is constant for all architectures.
Also, these parameters can be updated very quickly since for each example only 320 values need to be changed.

5

Network Px Nbr of Training SMT performance
architecture parameters time [min] BLEU TER TB2
Back-off 4-gram 76.3 n/a n/a 26.64 58.38 15.87
Initial CSLM, 1024-384 61.0 14.9M 60m 27.22 57.94 15.36
One hidden layer CSLM
512 62.7 9.4M 26m 27.58 57.61 15.01
1024 59.8 18.8M 46m 27.60 57.62 15.01
2048 60.0 37.5M 80m 27.74 57.92 15.09
Two hidden layer CSLM
1024-1024 57.5 19.8M 46m 27.85 57.49 14.82
1536-1536 57.3 30.5M 58m 27.95 57.67 14.86
3072-1536 57.6 35.8M 68m 27.77 57.51 14.87
Three hidden layer CSLM
768-768-768 57.4 15.3M 67m 27.96 57.27 14.65
1536-1024-768 57.3 17.9M 74m 27.96 57.57 14.80
1536-1536-1536 56.9 32.8M 63m 28.00 57.39 14.69
Four hidden layer CSLM
1536-1024-768-768 57.5 18.5M 50m 27.95 57.29 14.67
1536-1536-1024-1024 57.0 24.7M 83m 27.78 57.43 14.82
2048-2048-1536-1536 57.2 38.8M 78m 27.86 57.77 14.96
3072-2048-1536-1536 57.0 42.9M 83m 27.78 57.51 14.86

Table 2: Performance summary for different architectures of the neural network language model.
All networks use a short list of 16k. The projection layer is of dimension 6× 320 = 1920. It is not
counted in the number of “hidden layers”.

set. This is substantially better than the neural network LM trained with “default parameters”: the
combined metric (TER-BLEU)/2 decreased from 15.36 to 14.65.

5 Using long contexts

To the best of our knowledge, most of the experiments with feed-forward neural network LMs are
performed using “usual” language model orders, in the range of 4 to 6. Recurrent neural networks
have the theoretical advantage that they can capture a long history and they have been successfully
applied to language modeling [14]. However, there are theoretical arguments that gradients in re-
current neural networks tend to vanish over time [5]. It seems that in practice the recurrent neural
networks tends to “forget” the context after less than ten words. Also, efficient training of recurrent
neural networks is tricky since the examples need to be presented in sequential order.

In this section work, we report results on training standard feed-forward architecture with a large
fixed-size context, up to 30-gram. Shorter n-grams are handled by using a special NULL WORD
token as described above. In comparison to recurrent neural networks, all the inputs have the same
importance since they are seen simultaneously. There is no effect of “forgetting” over time until a
context of 29 words. We will provide experimental result that increasing the length of the context
up to 10 words does actually improve performance, but not beyond.

5.1 Task and resources

The results reported below were also obtained for a Arabic/English translation task, but using a
different set of data. We switched to the news domain for which the sentences are in average longer
(which makes it more appropriate to evaluate the impact of long context language models). The
available resources for this task are summarized in Table 3.

We trained an 4-gram back-off LM and CSLMs of various orders on this data, i.e. a total of more
than one billion words after data selection. The neural networks were trained for 30 epochs. At each
epoch, we randomly sample about 30M words from the selected subset. The projection layer has
a dimension of 320, followed by three 1024-dimensional tanh hidden layers and a softmax output

6

Training data genre words subset
Parallel mixed 248M 42M
Monolingual news 5.1G 1.1G
Total 5348M 1142M

Table 3: Resources available for Arabic/English news translation task.

layer with a 32k shortlist. The learning rate was set to 0.06 and it was decreased over the iterations.
As described in section 4.2, the networks weights were initialized to small random values which are
scaled in function of the dimension of the layers. The size of the context window has only a minor
impact on the training speed: it ranges from 1h13 for an 4-gram to 1h30 for an 30-gram (per epoch
on a Nvidia Tesla K40 GPU). This means that feed-forward CSLMs can be very efficiently trained,
even with large amounts of data and large context windows.

 44

 46

 48

 50

 52

 54

 56

 58

 60

 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

p
er

p
le

x
it

y

n−gram order

Figure 2: Perplexity of the CSLM in function of
the LM order (Arabic/English news task). The 4-
gram back-off LM has a perplexity of 75.0.

Figure 2 shows the perplexities on the develop-
ment data for the different models. The base-
line 4-gram back-off achieves a perplexity of
75.0. An CSLM of the same order achieves
60.0 which is already an 20% relative improve-
ment. In addition, the CSLM rapidly improves
with increasing context size, reaching a per-
plexity of 47.6 for an 10-gram and around 45
for an 16-gram and beyond. This is an 40% rel-
ative improvement with respect to the 4-gram
back-off LM. Similar tendencies were observed
for other tasks. We are not aware of reports that
back-off LMs achieve notable improvements in
perplexity beyond an order or 5. On the other
hand, our experiments clearly show that the
CSLM can take advantage of this longer con-
texts.

Figure 3 left shows the BLEU score as a func-
tion of the CSLM order. The 4-gram CSLM
achieves an improvement of about 1 point BLEU in comparison to the 4-gram back-off LM
(57.5→58.6). Further increasing the order of the CSLM substantially improves the BLEU score,
reaching an overall gain of 2.7 BLEU for an 12-gram (BLEU 60.2). Even longer contexts do not
change significantly the BLEU scores while there is still a (small) difference in perplexity (cf. Fig-
ure 2). A quite similar tendency was observed with an Arabic/French SMT system (see Figure 3
right). The overall gain brought by the CSLM is 2.5 BLEU (48.5→51.0).

 58

 58.5

 59

 59.5

 60

 60.5

 61

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

%
B

L
E

U

CSLM Order

Arabic/English SMT

CSLM
 49

 49.5

 50

 50.5

 51

 51.5

 52

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

CSLM Order

Arabic/French SMT

CSLM

Figure 3: BLEU scores of the CSLM in function of the LM order.
Left: Arabic/English (baseline: 57.5), Right: Arabic/French (baseline: 48.50)

7

These results could be seen as evidence that it is possible to learn long distance dependencies in
a very efficient manner with deep feed-forward architectures. Training on more than 1 billion ex-
amples (using resampling) took less than two days. Training recurrent or LSTM networks on as
much data is more challenging. Also, applying the notion of a deep architectures to recurrent neural
networks is still research question, see for instance [20]. This also confirms similar results by [10].
In that work, the authors report improvements when increasing the context size of a feed-forward
CSLM up to 9 words. The authors were not able to beat this feed-forward network with a recurrent
neural network LM.

6 Conclusion

This paper provided an extensive study of techniques to improve the training of large neural network
language models. The investigated meta-parameters include the size of the mini batch, the learning
rate, the network initialization and the network architecture. We also propose to handle short n-
grams by the neural network. We hope that this study will help other researchers to optimally train
the neural network on their data. All described experiments were performed with the open-source
CSLM toolkit.4 To the best of our knowledge, this is the first study showing that deep architectures
for language modeling do significantly outperform shallow ones, even with huge amounts of training
data. We were able to train neural networks with about 15 million parameters on more than 5 billion
words in 24 hours on a GPU card using the back-propagation algorithm. Key ingredients are: data
selection and weighted resampling to focus on the most relevant data, the use of mini batch mode to
process several examples at once, careful network initialization, processing of short n-grams by the
neural network and the use of four hidden layers. Our neural network language model achieves a
perplexity reduction of 25% with respect to the best back-off language model we were able to build.
We confirmed that deep architectures generalize better than shallows one, and that they need less
parameters. This improved generalization behavior is mainly observed when integrating the neural
network language models into a state-of-the-art statistical machine translation system, and less when
just analyzing their perplexity. These results suggest that comparing perplexities on some artificial
small task may be insufficient to compare different language models.

In a second large scale experiment, we showed that deep feed-forward architectures are able to
learn long distance dependencies in a very efficient way. We observed significant improvements in
perplexity when using a context window of up to 30 words, reaching gains of 40% relative with
respect to the best back-off LM we were able to build. The increased context size also leads to better
translation quality when these networks are integrated into an SMT system. One could therefore
argue that such long-distance feed-forward neural network LM are likely to have the same modeling
power than recurrent archtectures. It rather seems that the main challenge is to efficiently train each
model on all available data.

Acknowledgments

This work was partially financed by the DARPA Bolt project and the European Commission (project
MateCat ICT-2011.4.2 – 287688).

References
[1] Ebri Arisoy, Tara N. Sainath, Brian Kingsbury, and Bhuvana Ramabhadran. Deep neural net-

work language models. In NAACL-HLT workshop on the Future of Language Modeling for
HLT, pages 20–28, 2012.

[2] Yoshua Bengio. Learning deep architectures for ai. Technical report, Univesité de Montréal,
2007.

[3] Yoshua Bengio. Practical recommendations for gradient-based training of deep architectures.
In Neural Networks: Tricks of the Trade, Second Edition. Springer, 2012.

[4] Yoshua Bengio and Rejean Ducharme. A neural probabilistic language model. In NIPS, vol-
ume 13, pages 932–938, 2001.

4http://www-lium.univ-lemans.fr/˜cslm/

8

[5] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on NN, 5(2):157–166, 1994.

[6] Stanley F. Chen and Joshua T. Goodman. An empirical study of smoothing techniques for
language modeling. Computer Speech & Language, 13(4):359–394, 1999.

[7] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
networks. In AISTATS, pages 249–256, 2012.

[8] G. Hinton, L. Deng, D. Yu, G. Dahl, A.Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. Sainath, , and B. Kingsbury. Deep neural networks for acoustic modeling in
speech recognition. IEEE Signal Processing Magazine, 20, 2012.

[9] Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico,
Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, On-
drej Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical
machine translation. In ACL, demonstration session, 2007.

[10] Hai-Son Le, Alexandre Allauzen, and François Yvon. Measuring the influence of long range
dependencies with neural network language models. In NAACL-HLT workshop on the Future
of Language Modeling for HLT, 2012.

[11] Hai-Son Le, I. Oparin, A. Allauzen, J-L. Gauvain, and F. Yvon. Structured output layer neural
network language model. In ICASSP, pages 5524–5527, 2011.

[12] Yann LeCun, Léon Bouttou, Geneviève B. Orr, and Klaus-Robert Müller. Efficient backprop.
In Neural Networks: Tricks of the trade. Springer, 1998.

[13] Tomáš Mikolov, A. Deoras, S. Kombrink, and L. Burget anad J. Černocký. Empirical eval-
uation and combination of advanced language modeling techniques. In Interspeech, pages
605–608, 2011.

[14] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černocký, and Sanjeev Khudanpur. Re-
current neural network based language model. In Interspeech, pages 1045–1048, 2010.

[15] Tomáš Mikolov, S. Kombrink, L. Burget, J.H. Cernocky, and S. Khudanpur. Extensions of
recurrent neural network language model. In ICASSP, pages 5528–5531, 2011.

[16] Andriy Mnih and Koray Kavukcuoglu. Learning word embeddings efficiently with noise-
contrastive estimation. In NIPS, 2013.

[17] Robert C. Moore and William Lewis. Intelligent selection of language model training data. In
ACL, pages 220–224, 2010.

[18] Franz Josef Och. Minimum error rate training in statistical machine translation. In ACL, pages
160–167, 2003.

[19] K. Papineni, S. Roukos, T. Ward, and W.J. Zhu. BLEU: a method for automatic evaluation of
machine translation. In ACL, pages 311–318, 2002.

[20] Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. How to construct
deep recurrent neural networks. In ICLR, 2014.

[21] Holger Schwenk. Continuous space language models. Computer Speech and Language,
21:492–518, 2007.

[22] Holger Schwenk, Anthony Rousseau, and Mohammed Attik. Large, pruned or continuous
space language models on a GPU for statistical machine translation. In NAACL-HLT workshop
on the Future of Language Modeling for HLT, pages 11–19, 2012.

[23] Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John Makhoul. A
study of translation edit rate with targeted human annotation. In ACL, 2006.

[24] Andreas Stolcke. SRILM - an extensible language modeling toolkit. In ICSLP, pages II:
901–904, 2002.

[25] Martin Sundermeyer, Ilya Oparin, Jean-Luc Gauvain, B. Freiberg, Ralf Schlüter, and Hermann
Ney. Comparison of feedforward and recurrent neural network language models. In ICASSP,
2013.

[26] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. LSTM neural networks for language
modeling. In Interspeech, 2012.

9

	Introduction
	Continuous space language models
	Statistical machine translation
	Efficient training of deep architectures
	Task and resources
	Optimizing the meta-parameters of the CSLM

	Using long contexts
	Task and resources

	Conclusion

