Backprop-Free Auto-Encoders

Dong-Hyun Lee Yoshua Bengio
Université de Montréal Université de Montréal
Montréal, QC H3C 3J7 Montréal, QC H3C 3J7

CIFAR Fellow
Abstract

Back-propagation is typically used to train multi-layer neural networks, in partic-
ular auto-encoders, which have at least one hidden layer containing the learned
representation. Can auto-encoders be trained without back-propagation? This is
an interesting question because auto-encoders are building blocks for other un-
supervised learning procedures, and being able to train good auto-encoders with-
out using back-propagation could be useful for hardware implementations, as a
model for computational neuroscience, or to handle non-differentiable activation
functions. Following up on the much earlier idea of recirculation (dating to the
years when auto-encoders were invented), we propose an algorithm for training
Backprop-Free Auto-Encoders (BFAE). It exploits the fact that when the encoder
sees an input x and produces an output h, the (h,) pair can be used as an (in-
put,target) pair for the decoder, and similarly in the other direction. The proposed
algorithm exploits this symmetry and is actually minimizing the two-way recon-
struction error (to auto-encode z’s as well as auto-encoding h’s) and does it as well
as or better than regular denoising auto-encoders trained with back-propagation.

1 Introduction

Auto-encoders are interesting building blocks for learning representations, and in particular deep
representations (Bengio et al| [2007, [2013b). An interesting question raised by Bengio| (2014)) is
whether one can succesfully train auto-encoders without requiring back-propagation to obtain pa-
rameter updates. One motivation is biological plausibility, since backpropagation appears at least
on the surface to require non-local computation that is not neural-like (Crickl [1989; Zipser and
Andersen, [1988)). Another motivation, introduced by |[Bengio| (2014) is that one might be able to
generalize backpropagation-based updates to networks that are very non-linear or even perform dis-
crete (non-differentiable) computation. Using the same hardware for computing neuron outputs and
for propagating training signals, as well as the ability to deal with high-nonlinear, or discrete units
(e.g. binary units, as in spiking networks), could also be useful for low-power hardware implemen-
tations of neural networks. Backprop-free auto-encoders are also building blocks towards replacing
back-propagation by target propagation, according to the approach proposed by Bengio| (2014).

Fortunately, there is a very basic reason why one might hope that it should be possible to train
auto-encoders (and even deep ones) without actually requiring any back-propagation. If the encoder
computes an output h for a given input z, then the (h, ;) pair should constitute a good (input,target)
training example for the decoder. Similarly, if the decoder computes an output & for a given input
h, then the (z, fz) should constitute a good (input,target) training example for the encoder. Hence
the encoder and decoder can provide supervised input/output examples to each other. Although this
idea is simple, one might wonder about getting stuck in poor solutions where the auto-encoder does
not learn anything useful.

This paper studies the most basic scenario for training an auto-encoder, i.e., a shallow encoder f
coupled with a shallow decoder g, with the usual composition of affine and sigmoidal non-linear

activation:
f(z) = o(b+ Wa)
g(h) = o(c+ Vh) (1)

This proposes a novel algorithm for training auto-encoders without backpropagation, called
Backprop-Free Auto-Encoder (BFAE). The experiments are performed in the context of the Denois-
ing Auto-Encoder (DAE) (Vincent ez al., 2008)), because it works well as a feature extractor (Vin-
cent et al.,|2010) for deep networks and because it is now better understood mathematically: it can
be shown to implicitly estimate the data generating distribution (Alain and Bengiol [2013; Bengio
et al., [2013a, [2014), and one can sample from the estimated distribution by iterated applications
of encoding, decoding and noise injection, similarly to the Gibbs Markov chain for sampling from
RBMs (Hinton et al., 2006).

1.1 Recirculation

The proposed algorithm is a direct descendant of and closely related to the much older algorithm
by |Hinton and McClelland, (1988) called recirculation. The basic recirculation algorithm is similar
to the vanilla BFAE illustrated in Figure [T} with the delta-rule for updating weights, linear recon-
struction (with squared error), and no noise injection. |Hinton and McClelland| (1988) also consider
a variant called recirculation with regression in which the new value of the visible (input) units after
the reconstructions are computed are obtained by a linear combination of the original value of = and
the reconstruction g(h), with a weight A:

g=dx+ (1-XNg(h) ()
where A = 0.75 in their experiments. The paper shows that with sufficiently small A and the above

architecture, the delta-rule approximates gradient descent on the squared error reconstruction. They
call this variant the recirculation with regression and call X the regression coefficient.

Figure 1: Vanilla Backprop-Free Auto-Encoder, very similar to the recirculation procedure (Hinton
and McClelland, [1988). The decoder parameters (in g) are updated to make g(f(x)) close to 2 while
the encoder parameters (in f) are updated to make f(g(h)) close to h. Noise is injected to make
both g o f and f o g good denoising auto-encoders.

2 Backprop-Free Auto-Encoders

The basic Backprop-Free Auto-Encoder (BFAE) is very similar to the basic version of the recir-
culation procedure (Hinton and McClelland, |1988)), but with the possibility of having non-linear

. ., €~ -
N ' 4 N
S <t i)
_ \ ;
Teaas” =~ -
. =

A

Figure 2: Back-step Backprop-Free Auto-Encoder. The motivation for this variant is that we want
the encoder to be best at inverting the decoder where the decoder generates data points. Thus we
feed the encoder with an input that will be such that applying the decoder on the result will be close
to x.

encoders and decoders, arbitrary reconstruction loss functions, and noise injected, as in the denois-
ing auto-encoder. Thus, the basic recirculation algorithm is a special case and the main inspiration.
We compute

h = f(z) (3)
z = g(corrupt(h)) 4
h = f(corrupt(z)) 5)
and optimize the following two-way loss functions together:
L =loss(g(corrupt(h)), x) + loss(f (corrupt()), h) (6)

where loss(output,target) is the chosen reconstruction loss function and corrupt(a) injects noise,
e.g. in our experiments zero-mean Gaussian noise is added to a. In other words, the input z is
a target for the reconstruction & and the representation h is a target for the second-step encoder

output h. A target provides the desired value for the corresponding unit, so we update only the
encoder f with respect to loss(f(corrupt(z)), h) and we update only the decoder g with respect
to loss(g(corrupt(h)),x). x, h and & are thus treated as a constants in the optimization, with no
gradient back-propagated through them. So we do not need to use back-propagation: error signals
do not need to cross over hidden layers. The advantage of the added corruption, like in the denoising
auto-encoder variants (Vincent et al., 2008; Bengio et al.||2014)), is that we get contractive mappings
for both f(x) and g(h), yielding better representations that are more robust in the vicinity of the
training examples and allow to capture the data distribution (Alain and Bengio} 2013} Bengio ef al.,
2013a).

2.1 Back-step BFAE

The input denoising performance of the vanilla BFAE can be degraded because the target it uses for
improving h = f(z) is not the optimal one. The optimal target value for h = f(x) should be an h*
that would make the decoder g recover x when the decoder is applied to it, i.e., we would like to use
as target for h a vector h* such that

g(h*) = .

Finding that h* is difficult and would require an iterative optimization. Instead, in order to improve
on the vanilla BFAE model, we suggest the following Back-Step BFAE variant. To approximate 7,

we assume a linear approximation and obtain the proposed target h. If
g(f(x)) =@~z + Ax

is an additive approximation of g o f, i.e., locally g o f adds Az to its argument, then in order to get
the output of g o f to produce z, this approximation suggests to use

IT=x—Ax=2x—2

so that
g(f(@) ="~z

In order to estimate z* by Z, we thus first compute a clean version of the reconstruction:

h = f(z) (N
& =g(h) (®)
F=20 -3 €))
h = f(#) (10)
v* = g(h) (11)

and optimize the following loss functions together:

L = loss(g(corrupt(h)), x) + loss(f (corrupt(x)), h) + loss(f (corrupt(z*)), h). (12)

If loss(x*, z) < loss(x,) holds, we can think that this approximation works well and eventually
2* = g(h) can approach x as loss(g(corrupt(h)), x) decreases. Actually this relation always holds
in our experiments. This model shows better reconstruction error on both x and h than the vanilla
BFAE. The last loss function is added to get more robust results and make sure that f also makes
f o g being a good denoising auto-encoder at h.

Note that the updates on the parameters of f and ¢ are obtained by computing the gradient of the
above losses on the weights and biases, which ends up being (like for recirculation) the delta-rule,
of the form (target - output) times input.

3 Experiments

3.1 Dataset and Performance Monitoring

In order to test our models, we used the MNIST handwritten digit recognition dataset. This dataset
is the most famous one in deep learning literature and has been used a lot for unsupervised learning.
Most of the papers estimate classification error or the generative log-likelihood on test set. However,
we estimate only the denoising reconstruction error on the validation set in order to know whether
our model can train (denoising) auto-encoding function without back-propagation, and we com-
pare with the denoising reconstruction loss obtained with a regular DAE trained using back-prop to
compute true gradients.

Although we do not expect the BFAE to optimize denoising reconstruction error better than the
backprop-based DAE, we note that the two models do not really minimize the same objective. The
BFAE is minimizing a reconstruction error not only on the g o f auto-encoder but also on the f o g
auto-encoder.

For that reason, the experiments monitor both reconstruction errors, loss(g(f(corrupt(x))), «) and
loss(f(g(corrupt(h))), h) and their sum. Moreover we also test the two-way DAE which optimizes
the two-way loss (the sum of the above losses) using back-propagation as a strong baseline.

We use averaged binary cross entropy as a loss function and salt and pepper noise for corruption.
For testing, we split the original 60,000 training set into 50,000 train / 10,000 valid sets and used the
validation set for hyper-parameter search.

loss{ gif{corrupt{x})). x)

2 0.80

_al — recirculation w/ regression — recirculation w/ regression
g ; — recirculation wfo regression g 075k — recirculation w/o regression
g — wvanilla BFAE w/fo corruption =] — wanilla BFAE wjo corruption

. o .
5 6 — back-step BFAE w/o corruption [{ n — back-step BFAE w/o corruption
Z 7 £ 070} 1
= g =
5 5
T 4F ©
£ 5 065
g 3 =]
e 3 g
&Sl [—
g 5 060 — —
[— 2
b ©
@l

0 . 05 .
0ol o 0.01

01

loss(flg{corrupt(h)}), h)

corruption level with gaussian neise {std) on test time

corruption level with gaussian neise {std) on test time

(a) Denoising reconstruction error on input .
representation h

Figure 3: Denoising reconstruction error on input x (a) and hidden representation £ (b) for various
levels of corruption at testing time to compare BFAEs to the recirculation algorithm. BFAEs per-
formed better than the recirculation except on input z with std = 0.1, due to choosing learning rates
according to loss(g(f(x)),z) and without using corruption. The experiment setup is the same as
the recirculation paper, with squared error reconstruction on x (linear units), but cross-entropy on h
(sigmoid units).

reconstuction error {cross entropy)

loss{ giflcorrupt(x,0.0))), x)

0.18 018
— vanilla BFAE — wanilla BFAE
D16 — back-step BFAE | 0.16 — back-step BFAE |
— reqular DAE — reqular DAE
014 — two-way DAE 014 — two-way DAE

=
—
¥

=
-
=

=]
=]
=]

00300

0.01 0.10
«corruption level on train time

030

(a) test-time corruption level p = 0.0

reconstuction error (cross entropy)

loss(glficorrupt(x,0.1})), x)

01

(b) Denoising reconstruction error on hidden

=]
bt
]

=
=
=]

=
=]
=]

00!%00

0.01 010
corruption level on train time

(b) test-time corruption level p=0.1

Figure 4: Denoising reconstruction error on input 2 for various levels of corruption at training time
(horizontal axis) and at test time (0 noise in (a), p=0.1 in (b)). The back-step BFAE is slightly worse
than the DAEs on x reconstruction, with or without test noise, across training noise conditions. The
back-step BFAE is better than the vanilla BFAE which is also the regular recirculation algorithm
when the training noise level is 0.

3.2 Experimental Setup

To show that our Backprop-Free Auto-Encoders act like the recirculation, At first we compare 4
ways of training the same model:

o the recirculation model with regression (A = 0.75),

o the recirculation model without regression (i.e., A = 0),
o vanilla backprop-free auto-encoder (vanilla BFAE) and

e back-step backprop-free auto-encoder (back-step BFAE).

We choose the learning rate among {0.005, 0.01, 0.1, 1} according to validation set reconstruction
error (squared error) in each experiment. We use 1000 hidden units and train over 1000 epochs
without corruption. According to the recirculation paper, we use sigmoid encoding units and linear

030

loss(f(g{corrupt(h,0.0]}), h) loss(flg{corrupt(h,0.1))), h)

o7 oy
— vanilla BFAE — vanilla BFAE
0.6 — back-step BFAE |{ 0ef — back-step BFAE
- — regular DAE — — regular DAE
0.5 two-way DAE [0.5 . two-way DAE

=
w
=
[

reconstuction error {cross entropy)
=
B

reconstuction error {cross entropy)
=1
B

=]

N
|
|
|

|

=
¥
|

=]
==
[=]
=]

0 & L] 0 61 V] IlD 030
corruption level on train time corruptien level on train time
(a) test-time corruption level p = 0.0 (b) test-time corruption level p = 0.1

Figure 5: Denoising reconstruction error on representation h for various levels of corruption at
training time (horizontal axis) and at test time (0 noise in (a), p=0.1 in (b)). The back-step BFAE is
much better than the regular DAE on h reconstruction, and slightly better than the two-way DAE, in
both noise conditions and across training noise conditions. or without test noise.

0.01 0.10 0.30

943055{ glf{carrupt(x,0.0))), x) + loss{ flg{corrupt(h,0.0))), h) 943055{ glflcorrupt(x.0.1))), x) + loss{ figlcorrupt(h,0.1))), h)
— wanilla BFAE — vanilla BFAE

0.7 — back-step BFAE |{ 07f — back-step BFAE |
— regular DAE ey . — regular DAE

06 two-way DAE osf N — two-way DAE

=
.
=
.

reconstuction error {cross entropy)
=
in

=
i

reconstuction error {cross entropy)
=1
n

=]
[

0.01 0.10

=]
=]
[=]
=]

0800 061 V] IlD 030
corruption level on train time corruptien level on train time
(a) test-time corruption level p = 0.0 (b) test-time corruption level p = 0.1

Figure 6: Denoising reconstruction error on both representation h and input x, for various levels
of corruption at training time (horizontal axis) and at test time (0 noise in (a), p=0.1 in (b)). The
back-step BFAE is much better than the regular DAE on h reconstruction, and slightly better than
the two-way DAE, in both noise conditions and across training noise conditions. or without test
noise. It is also slightly better than the regular BFAE (which is basically the regular recirculation
algorithm, in the O training noise condition).

decoding units. We use squared error loss on z (linear decoding units), cross entropy on h (sigmoid
encoding units). In figure [3| we estimate reconstruction error on x and h with test-time corruption
(gaussian noise) std € {0.0,0.01,0.1}.

Then, in order to compare our model to well-known DAE, we compare 4 ways of training the same
model:

e as aregular denoising auto-encoder (DAE) trained with backprop,

e as a DAE with the two-way losses (two-way DAE) trained with backprop,
e vanilla backprop-free auto-encoder (vanilla BFAE), and

e back-step backprop-free auto-encoder (back-step BFAE).

0.30

We choose the learning rate among {1, 10, 100} according to the validation set reconstruction error
in each experiment. || We use 1000 hidden units and train over 1000 epochs. We use salt-and-
pepper corruption with probability of corrupting a bit of p € {0.0,0.01,0.1,0.3} at training time,
and p € {0.0,0.1} at test time.

3.3 Experimental Results

Figure [3] shows that the BFAEs perform generally better (except at noise level 0.1 for « recon-
struction) compared to the recirculation variants. At first, we estimate reconstruction error on x
with test-time corruption p € {0.0,0.1}. In Figure 4, we see that DAEs are better than BFAEs
in terms of z-reconstruction, but in Figure [5] we see that regular DAEs are worse than BFAEs in
terms of h-reconstruction. However, the back-step BFAE is only slightly worse than DAEs in terms
of z-reconstruction but much better in terms of h-reconstruction, while the back-step BFAE is al-
most equivalent to the DAEs for z-reconstruction but clearly stronger in terms of h-reconstruction.
Putting these two losses together in Figure [6] we see that in terms of the total 2-way reconstruc-
tion error, BFAEs are much better than regular DAEs and 2-way DAEs, even though we train the
two-way DAE with the two-way loss on x and h using back-propagation.

4 Conclusion

We investigate Backprop-free Auto-Encoder, which can be trained without back-propagation. In
our experiment, we showed that our model inspired by the recirculation can train (denoising) auto-
encoding functions successfully. The denoising performance outperforms the original recirculation,
Moreover, it is competitive with well-known Denoising Auto-Encoder. Meanwhile the denoising
performance on (h,x) is better than DAE and DAE with the two-way loss. This model could be
useful for hardware implementations, as a model for computational neuroscience, or to handle non-
differentiable activation functions. In addition, this is also building blocks towards replacing back-
propagation by target propagation, according to the approach proposed by Bengio| (2014).

Acknowledgments

The author would like to acknowledge the support of the following agencies for research funding
and computing support: NSERC, Calcul Québec, Compute Canada, the Canada Research Chairs
and CIFAR.

References

Alain, G. and Bengio, Y. (2013). What regularized auto-encoders learn from the data generating
distribution. In International Conference on Learning Representations (ICLR’2013).

Bengio, Y. (2014). How auto-encoders could provide credit assignment in deep networks via target
propagation. Technical report, arXiv preprint arXiv:1407.7906.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2007). Greedy layer-wise training of deep
networks. In NIPS’2006.

Bengio, Y., Yao, L., Alain, G., and Vincent, P. (2013a). Generalized denoising auto-encoders as
generative models. In Advances in Neural Information Processing Systems 26 (NIPS’13). NIPS
Foundation (http://books.nips.cc).

Bengio, Y., Courville, A., and Vincent, P. (2013b). Unsupervised feature learning and deep learning:
A review and new perspectives. IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI).

Bengio, Y., Thibodeau-Laufer, E., Alain, G., and Yosinski, J. (2014). Deep generative stochastic
networks trainable by backprop. In Proceedings of the 30th International Conference on Machine
Learning (ICML’14).

Crick, F. (1989). The recent excitement about neural networks. Nature, 337, 129-132.

'the learning rates are large because we use averaged cross entropy per unit. Otherwise, these values would
be approximately {0.001, 0.01, 0.1}.

Hinton, G. E. and McClelland, J. L. (1988). Learning representations by recirculation. In
NIPS’ 1987, pages 358-366.

Hinton, G. E., Osindero, S., and Teh, Y. (2006). A fast learning algorithm for deep belief nets.
Neural Computation, 18, 1527-1554.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008). Extracting and composing
robust features with denoising autoencoders. In ICML 2008.

Vincent, P., Larochelle, H., Lajoie, 1., Bengio, Y., and Manzagol, P.-A. (2010). Stacked denoising
autoencoders: Learning useful representations in a deep network with a local denoising criterion.
J. Machine Learning Res., 11.

Zipser, D. and Andersen, R. (1988). A back propagation programmed network that simulates re-
sponse properties of a subset of posterior parietal neurons. Nature, 331, 679—684.

	Introduction
	Recirculation

	Backprop-Free Auto-Encoders
	Back-step BFAE

	Experiments
	Dataset and Performance Monitoring
	Experimental Setup
	Experimental Results

	Conclusion

