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Abstract

We describe deep exponential families, a class of random effects models that are
inspired by the hidden structures used in deep neural networks. These mod-
els allow for hierarchical dependencies between latent variables to be captured,
while the language of exponential families allows for new models to be described
quickly. We perform inference in these models using recent “black box” varia-
tional inference techniques. We evaluate various DEFs on text and collaborative
filtering. We show both improved predictive performance along with exploratory
analysis that shows that the models capture hierarchical structure found in the
data.

1 Introduction

In this paper we develop deep exponential families (DEFs), a flexible family of probability distribu-
tions that reflect the intuitions behind deep unsupervised feature learning. In a DEF, observations
arise from a cascade of layers of latent variables. Each layer’s variables are drawn from an expo-
nential family that is governed by the inner product of the previous layer’s variables and a set of
layer-specific latent variables (weights). As in deep unsupervised feature learning, a DEF represents
hidden patterns, from coarse to fine grained, that compose with each other to form the observations.
DEFs also enjoy the advantages of probabilistic modeling. Through their connection to exponential
families [5], they support many kinds of data both at the observed and latent levels. Further, they
can be connected and combined into more complex models.

For example, consider the problem of modeling documents. We can represent a document as a
vector of term counts. In one type of DEF, each term’s count is modeled as a Poisson random
variable; its rate is an inner product of a layer of latent variables (one level up from the terms) and a
set of weights that are shared across documents. Loosely, we can think of the latent layer above the
observations as “topics”, each of which activates a set of related terms via their inner product with
the weights. These latent topic counts are, in turn, modeled the same way, conditioned on a layer
above of “super topics.” Just as the topics group related terms, the super topics group related topics
(again via the inner product). Note that this style of model, though with different details, has been
previously studied in the topic modeling literature [17]. Figure 1 illustrates an example of a 2-level
DEF uncovered from a large collection of news articles.

We emphasize that this is just one example. In a DEF, the latent variables can be from any expo-
nential family: Bernoulli latent variables recover the classical sigmoid belief network [21]; Gamma
latent variables give something akin to deep version of nonnegative matrix factorization [16]; Gaus-
sian latent variables lead to the types of models that have recently been explored in the context of
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Figure 1: A fraction of the three layer topic hierarchy of the New York Times. We choose 2 concepts
and then show the top-3 super topics from each concepts, and top-3 topics from each super topics.
The top words are shown for each topic. The arrows represent hierarchical groupings.

computer vision [23]. We may further change the prior on the weights and the observation model.
In the language of neural networks, the prior on the weights amounts to choosing a type of regular-
ization; the observation model amounts to choosing a type of loss. Finally, as with any probabilistic
model, we can embed the DEF in a more complex model. As examples, the DEF can be made part
of a multi-level model of grouped data [8], time-series model of sequential data, or a factorization
model of pairwise data [26].

Below, we will define and develop deep exponential families, explain some of their properties, and
situate them in the larger contexts of probabilistic models and neural networks. For example, in a
DEF there is a function that maps an inner product to a natural parameter—a similar mapping exists
in generalized linear models [18]—and this is a source of non-linearity in the exponential family
analogue of a deep neural network. In general, the relationship between simple linear regression and
Bayesian generalized linear models is mirrored in the relationship between deep neural networks
and deep exponential families.

We will develop algorithms for using DEFs to solve real-world problems. Given a data set of ob-
servations, we estimate the conditional distribution of the latent layers of hidden variables and the
latent parameters. Unfortunately DEFs are a nonconjugate model—their local conditional distribu-
tions are difficult to compute—and so they are not amenable to simple inference algorithms like
Gibbs sampling [9] or variational message passing [10]. We will leverage recent results in inference
for nonconjugate models [31, 27, 22] to develop general-purpose variational algorithms. On both
document models and recommendation system data, we demonstrate that our algorithms let us easily
explore and compare a particular Gamma DEFs for modern data analysis problems.

2 Deep exponential families

Exponential families [5] are a class of distributions with convenient mathematical properties. They
take the following form.

p(x) = h(x) exp(η>T (x)− a(η)),
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where h is the base measure, η are the natural parameters, T are the sufficient statistics, and a is
the log normalizer. The expectation of the sufficient statistics of an exponential family is given
by the gradient of the log normalizer E[T (x)] = ∇ηa(η). Exponential families are completely
specified by their sufficient statistics and base measure; different choices of h and T lead to different
distributions. For example, for the normal distribution the base measure is h =

√
(2π) and the

sufficient statistics are T (x) = [x, x2]; and for the Beta distribution, a distribution with support over
[0, 1], the base measure is h = 1 and sufficient statistics are T (x) = [log x, log 1− x].

To construct deep exponential families, we will chain exponential families together in a hierarchy,
where a draw from one layer controls the natural parameters of the next. We formalize this using
the notation EXPFAM(x, η), where the first argument is the variable and the second is the natural
parameter of the exponential family.1

For each data point xn, the model has L layers of hidden variables zn,1:L, where each zn,` is a
collection of K` random variables, zn,`,1:K` . We assume that zn,`,k is a scalar, but the model gen-
eralizes beyond this. Shared across data, the model has L layers of weights W1:L, where each W`

is a collection of K` vectors, each one with dimension K`−1. We assume the weights have a prior
distribution on them given by p(W`)

For simplicity, we omit the data index n and describe the distribution of a single data point x. First,
each latent variable is drawn conditional on the previous layer,2

p(z`,k | z`+1) = EXPFAM`(z`,k, g`(z
>
`+1W`+1,k)). (1)

Confirm that the dimensions work: z`,k is a scalar; z`+1 and W`+1,k are both K`+1 vectors. Note
each of the k variables in layer ` depends on all the variables of the higher layer. This gives the
model the flavor of a neural network. EXPFAM` indicates that the exponential family may vary at
each layer. We assume a prior on the top layer p(zL) = EXPFAML(η) where η is the prior parameter.

This hierarchy of latent variables defines the DEF. The data are drawn conditioned on the lower layer
of the DEF, p(xn,i | zn,1). In this paper, we focus on count data, thus we use the Poisson distribution
as the observation likelihood. The Poisson distribution with mean λ is

p(xn,i = z) = e−λ
λx

x!
.

If we let xn,i be the count of type i associated with observation n, then xn,i’s distribution is

p(xn,i | z1,W1) = Poisson(z>n,1W1,i),

where W1 is a matrix of latent variables shared across observations.

Returning to the example from the introduction of modeling documents, the xn are a vector of term
counts. This means the observation weights W1 put positive mass on groups of terms. Thus, they
form “topics.” Similarly, the weights on the second layer represents “super topics.” The distribution
p(zn,1 | zn,2) represents the distribution of “topics” given the “super topics” of a document. Figure 3
depicts the compositional and sharing semantics of DEFs.

The Link Function The latent variable layers in deep exponential families are connected together
via a link function, g`. Specifically the natural parameters for z`,k are specified by the inner product
of z`+1 with the weightsW`+1,k passed through g`. Using properties of exponential families we can
determine how the link function alters the distribution of the `th layer. The moments of the sufficient
statistics of an exponential family are given by the gradient of the log normalizer ∇ηa(η). These
moments completely specify the exponential family. Thus in DEFs, the mean of the next layer is
controlled by the link function gl via the gradient of the log normalizer,

∇ηa(gl(z
>
`+1W`+1,k)). (2)

Consider the case of the identity link function, where gl(x) = x. In this case, the expectation in deep
exponential families gets transformed by the log-normalizer at each level. This transformation of

1We are loose with the base measure, h as it can be absorbed into the dominating measure.
2This inner product is passed through a function g` to obtain the natural parameter. We call this the link

function.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

zn;`�1;kW`;k

W`C1;k zn;`;k

K`�1

KL

zn;L;k⌘

K1

zn;1;kW2;k

xn;iW1;i
V

���
���

N

K`

(a) The deep exponential family

●

●

●
● ● ● ● ● ● ● ●

0.
0

0.
2

0.
4

0.
6

0.
8

0.0 2.5 5.0 7.5 10.0

●●●●●●●●●●●●●●●●●
●●●

●●●
●●●●●●●●●●●●●●●●●●

0.
0

0.
1

0.
2

0.
3

0.
4

0 10 20 30 40

(b) Draws from the Poisson (blue) and gamma dis-
tribution (orange) with low and high mean. The
shape of the gamma is held fixed. Note the high
mean shifts the Poisson, while does not shift the
gamma. Notice the spike-slab appearance of the
gamma distribution.

Figure 2

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

the expectation is one source of non-linearity in DEFs. It parallels the non-linearities used in neural
networks.

To illustrate the potential of deep exponential families, we focus on a single example: the sparse
gamma DEF. We note that we are just beginning to explore the possibilities of DEFs. As such
Gamma DEFs provide a proof of concept architecture. We are interested in exploring other latent
exponential-family representations as well as combinations of different exponential-family repre-
sentations for latent and visible units. Specifically, we are currently investigating three additional
DEF architectures. First, sigmoid belief networks which have been widely used [21, 19]. We are
also exploring Poisson DEFs which can be seen as an more general version of sigmoid belief nets.
Finally, we are exploring compositions of multiple DEFs. Such compositions allow us to explore
deep extensions of common models (e.g., matrix factorization for collaborative filtering). Note that
although still preliminary we have obtained good empirical results using all of aforementioned DEF
architectures.

Sparse Gamma DEF The gamma distribution is an exponential family distribution with support
over the positive reals. The standard form of the density in exponential family form with natural
parameters, α and β, is

p(z) = z−1 exp(α log(z)− βz − log Γ(α)− α log(β)).

where Γ is the Gamma function. When α is small this distribution puts most of its mass near zero.
The expectation of the gamma distribution is given by αβ−1.

Through the link function in DEFs, the inner product of the previous layer and the weights control
the natural parameters of the next layer. For sparse gamma models, we want components in a layer
to control the expected activation of the next layer, while the shape at each layer remains constant.

Let α` be the shape at layer `, then the link function is

g1 = α`, g2 =
α`

z>`+1W`+1,k
.

As the expectation of gamma variables needs to be positive, we choose the gamma distribution as
the prior on the weights.

The sparse gamma DEF differs in how the distribution changes given a change in the mean from
common distributions such as the normal and Poisson. For example in the Poisson distribution,
when the expected value is high, that draws are likely to be much larger than zero. While in the case
of the sparse gamma DEF, when the expectation is high, z will either be close to zero or very large.
This is akin to a soft spike-slab prior [14]. Figure 2b visually demonstrates this by plotting both the
Poisson and gamma distribution in both settings.

We estimate the posterior on this DEF using one to three layers for a large text copora: New York
Times (NYT). We find that the perplexity decreases as we increase the number of layers in our model
Table 1. Figure 1 displays a portion of the topic hierarchy for the NYT corpus. We find the similar
topics are grouped into “super topics” and “super topics” are grouped into higher level “concepts”.
This forms a semantic hierarchy that can be used for exploratory data analysis. In the appendix we
present a larger chunk of the New York Times hierarchy. We differ the discussion of the details of
the corpora and evaluation metric to Section 4.

Related Research. Graphical models and neural nets have a long and distinguished history. A full
review is outside of the scope of this article, however we highlight some key results as they relate to
DEFs. Deep exponential families fall into the broad class of stochastic feed forward belief networks
[21], but Neal [21] only shows one example in this class, the sigmoid belief network, which is a
binary latent variable model. Several existing stochastic feed forward networks are DEFs, such as
latent Gaussian models [23] and the sigmoid belief network with layer-wise dependencies [19].

Undirected graphical models have also been used in inferring compositional hierarchies. Salakhut-
dinov and Hinton [25] proposes deep probabilistic models based on Restricted Boltzmann Machines
(RBMs) [29]. RBMs are a two layer undirected probabilistic model with one layer of latent vari-
ables and one layer of observations tied together by a weight matrix. Directed models such as DEFs
have the property of explaining away, where independent latent variables under the prior become
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Figure 3: We depict the composition capacities of DEF through the generation of words for three
different documents. Activated units are colored. The sports and the health concepts share some
activated super topic (blue units). While health and farming do not yet they are able to generate the
same word (organic) by activating similar topics (pink units).

dependent conditioned on the observations. This property makes inference harder than in RBMs,
but forces a more parsimonious representation where similar features compete to explain the data
rather than work in tandem [11, 1].

RBMs have been extended to general exponential family conditionals in a model called exponential
family harmoniums (EFH) [30]. A certain infinite DEF with tied weights is equivalent to an EFH
[13], but as our weights are not tied, deep exponential families represent a broader class of models
than exponential family harmoniums (and RBMs).

The literature of latent variable models relates to DEFs through hierarchical models and Bayesian
factor analysis. Latent tree hierarchies have been constructed with specific distributions (Dirichlet)
[17], while Bayesian factor analysis methods such as exponential family PCA [20] and multinomial
PCA [6] can be seen as a single layer deep exponential family.

3 Inference

The central computational problem for working with DEFs is posterior inference. The intractability
of the partition function means posterior computations require approximations. Past work on sig-
moid belief networks has proposed doing greedy layer-wise learning (for a specific kind of network)
[13]. Here, instead, we develop variational methods [28] that are applicable to general DEFs. We
emphasize that we propose approximating the posterior on all latent layers simultaneously.

Variational inference [15] casts the posterior inference problem as an optimization problem. Varia-
tional algorithms seek to minimize the KL divergence to the posterior from an approximating distri-
bution q. This is equivalent to maximizing the following [2],

L(λ) = Eqλ(z)[log p(x, z,W )− log q(z,W )].

The free parameter λ indexes the variational distribution. This objective function is called the Evi-
dence Lower BOund (ELBO) because it is a lower bound on log p(x).

For the approximating distribution, q, we use the mean field variational family. In this approxi-
mating family, the distribution over the latent variables factorizes. That is with n observations, the
variational family is

q(z,W ) =

L∏
`=1

q(W`)

N∏
n=1

q(zn,`),

where q(zn,`) and q(W`) are fully factorized. Each component in q(zn,`) is

q(zn,`,k) = EXPFAM`(λzn,l,k),

6
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where the exponential family is the same one as the model distribution p. Similarly, we choose
q(W ) to be in the same family as p(W ).

To maximize the ELBO, we need to compute expectations under the approximation q. These expec-
tations for general DEFs will not have a simple analytic form. Thus we use more recent “black box”
variational inference techniques that step around computing this expectation [31, 27, 22].

Black box variational inference methods use stochastic optimization[24] to avoid the analytic in-
tractability of computing the objective function. Stochastic optimization works by following noisy
unbiased gradients. In black box variational inference [22], the gradient of the ELBO with respect
to the parameters of a latent variable can be written as an expectation with respect to the variational
approximation. More formally, if we let pn,`,k(x, z,W ) be the terms in the log joint that contains
zn,`,k (its Markov blanket), then the gradient for the variational approximation of zn,`,k is

Eq[∇λzn,`,k log q(zn,`,k)(log pn,`,k(x, z,W )− log q(zn,`,k))].

To compute the Monte Carlo estimate of the gradient, we need to be able to evaluate the Markov
blanket for each latent variable, the approximating distribution, and the gradient of the log of the
approximating distribution (score functions). For the sparse gamma model, the score functions we
need are for the gamma distribution. The score functions for the gamma distribution are

∂ log q(z)

∂α
= −ϕ(α)− log θ,+ log z

∂ log q(z)

∂θ
= −α/θ + z/θ2,

where ϕ is the digamma function.

The Markov blanket for a latent variable in the first layer is

log pn,1,k(x, z,W ) = log p(zn,1,k|zn,2) + log p(xn|zn,1,W ).

The Markov blanket for a latent variable in the intermediate layer is

log pn,`,k(x, z,W ) = log p(zn,`,k|zn,`+1,W`+1) + log p(zn,`−1|zn,`,W`).

The Markov blanket for the top layer is

log pn,L,k(x, z,W ) = log p(zn,L,k) + log p(zn,L−1|zn,L,WL).

The gradients and Markov blankets for W can be written similarly.

Stochastic optimization requires a learning rate to scale the noisy gradients before applying them to
the current parameters. We use RMSProp which scales the gradient by the square root of the online
average of the squared gradient.3 RMSProp captures the varying length scales and noise through the
sum of squares term used to normalize.

4 Experiments

In this section, we provide details on our predictive metric, held out perplexity, along with establish-
ing a baseline.

Baseline As a baseline we consider Poisson factorization [7, 12]. Poisson factorization, generates
the word count xn,i as

p(xn,i) = Poisson(θ>n βi),

where θn and βi are K dimensional iid gamma vectors. This model has been shown in Canny [7]
to have superior predictive performance to the popular text model latent Dirichlet allocation [4].
Poisson factorization is equivalent to the 1-layer sparse gamma model. Thus in the perplexity table
we label it as both.

Datasets We consider the New York Times corpora. It consists of 165,120 documents with 8,000
terms.

3
http://www.cs.toronto.edu/˜tijmen/csc321/slides/lecture_slides_lec6.pdf
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Figure 4: A fraction of the three layer topic hierarchy of the New York Times. The top words are
shown for each topic. The arrows represent hierarchical groupings. Better seen on on screen at high
resolution.

DEF Type PF/100 100-30 100-30-15
Sparse Gamma 2396 2151 2106

Table 1: Predictive likelihood on held out collection of 1K New York Times documents. We find
that going to deeper DEFs improves predictive likelihoods. We emphasize that the one layer sparse
gamma DEF is equivalent to Poisson factorization (PF) our baseline.

Evaluation We compute perplexity on a held out set of 1,000 documents. Held out perplexity is
given by

exp

(−∑d∈docs
∑
w∈d log p(w | # held out in d)

Nheld out words

)
.

Condtional on the total number of held out words, the distribution of the held out words becomes
multinomial. The mean of the conditional multinomial is given by the normalized Poisson rate in
each document. We set the rates to the expected value under the variational distribution. To compute
the variational distribution for the document specific latent variables, the DEF for the document, we
use ten percent of the words; the other ninety percent form the held out set.

Architectures and Hyperparameters We build one, two and three layer hierarchies of the sparse-
Gamma DEF, The sizes of the layers are 100, 30, and 15 respectively. We choose one hundred
topics as it fall into the range of topics searched in the topic modeling literature [3]. We detail the
hyperparameters for each DEF in the appendix.

Results Table 1 summarizes the predictive results on the New York Times corpus. We find that
adding more layers improves prediction. We find similar results on a large corpus of scientific
documents.

Topic hierarchy We choose 5 concepts and then show the top-3 super topics from each concepts,
and top-3 topics from each super topics. The top words are shown for each topic. Note the overlap-
ping hierarchical structure.

5 Discussion

We develop deep exponential families as a way to describe hierarchical relationships of latent vari-
ables to capture compositional semantics of data. We present several instantiations of deep expo-
nential families and achieve improved predictive power and interpretable semantic structures for the
problem of text. Our current research focuses on exploring other DEF architectures as well as on
variational inference techniques. Specifically we are researching structured variational inference
methods (similar to [19]) as well as methods which further exploit the properties of exponential
family distributions.
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