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Abstract

Recently proposed neural network activation functions such as recti�ed lin-
ear, maxout, and local winner-take-all have allowed for faster and more ef-
fective training of deep neural architectures on large and complex datasets.
The common trait among these functions is that they implement local com-
petition between small groups of units within a layer, so that only part of
the network is activated for any given input pattern. In this paper, we
attempt to visualize and understand this self-modularization, and suggest
a uni�ed explanation for the bene�cial properties of such networks. We
also show how our insights can be directly useful for e�ciently performing
retrieval over large datasets using neural networks.

1 Introduction

Recently proposed activation functions for neural networks such as recti�ed linear (ReL;[1]),
maxout [2] and LWTA [3] are quite unlike sigmoidal activation functions. These functions
depart from the conventional wisdom in that they are not continuously di�erentiable (and
sometimes non-continuous) and are piecewise linear. Nevertheless, many researchers have
found that such networks can be trained faster and better than sigmoidal networks, and they
are increasingly in use for learning from large and complex datasets [4, 5]. Past research
has shown observational evidence that such networks have bene�cial properties such as not
requiring unsupervised training for weight initialization [1], better gradient �ow [2] and
mitigation of catastrophic forgetting [3, 6]. Recently, the expressive power of deep networks
with such functions has been theoretically analyzed [7]. However, we are far from a complete
understanding of their behavior and advantages over sigmoidal networks, especially during
learning. This paper sheds additional light on the properties of such networks by interpreting
them as models of models.

A common theme among the ReL, maxout and LWTA activation functions is that they are
locally competitive. Maxout and LWTA utilize explicit competition between units in small
groups within a layer, while in the case of the recti�ed linear function, the weighted input
sum competes with a �xed value of 0. Networks with such functions are often trained with
the dropout regularization technique [8] for improved generalization.

We start from the observation that in locally competitive networks, a subnetwork of units
has non-zero activations for each input pattern. Instead of treating a neural network as a
complex function approximator, the expressive power of the network can be interpreted to
be coming from its ability to activate di�erent subsets of linear units for di�erent patterns.
We hypothesize that the network acts as a model that can switch between �submodels�
(subnetworks) such that similar submodels respond to similar patterns. As evidence of this
behavior, we analyze the activated subnetworks for a large subset of a dataset (which is not
used for training) and show that the subnetworks activated for di�erent examples exhibit a
structure consistent with our hypothesis. These observations provide a uni�ed explanation
for improved credit assignment in locally competitive networks during training, which is
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Figure 1: Comparison of recti�ed lin-
ear units (ReLUs), local winner-take-all
(LWTA), and maxout activation functions.
The pre- and post-synaptic activations of
the units are shown on the left and right side
of the units respectively. The shaded units
are `active' � non-zero activations and errors
�ow through them. The main di�erence be-
tween maxout and LWTA is that the post-
synaptic activation can �ow through connec-
tions with di�erent weight depending on the
winning unit in LWTA. For maxout, the out-
going weight is the same for all units in a
block.
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Figure 2: Subnetworks for 100 examples for
10 ReLUs. The examples activate many dif-
ferent possible subsets of the units, shown in
dark. In this case, unit number 3 is inactive
for all examples.

believed to be the main reason for their success. Our new point of view suggests a link
between these networks and competitive learning approaches of the past decades. We also
show that a simple encoding of which units in a layer are activated for a given example
(its subnetwork) can be used to represent the example for retrieval tasks. Experiments on
MNIST, CIFAR-10, CIFAR-100 and the ImageNet dataset show that promising results are
obtained for datasets of varying size and complexity.

2 Locally Competitive Neural Networks

Neural networks with activation functions like recti�ed linear, maxout and LWTA are locally
competitive. This means that local competition among units in the network decides which
parts of it get activated or trained for a particular input example. For each unit, the total
input or presynaptic activation z is �rst computed as z = wx + b, where x is the vector of
inputs to the unit, w is a trainable weight vector, and b is a trainable bias. For the recti�ed
linear function, the output or postsynaptic activation of each unit is simply max(z;0), which
can be interpreted as competition with a �xed value of 0. For LWTA, the units in a layer
are considered to be divided into blocks of a �xed size. Then the output of each unit is
Iz where I is an indicator which is 1 if the unit has the maximum z in its group and 0
otherwise. In maxout, the inputs from a few units compete using amax operation, and the
block output is the maximum z among the units1. A maxout block can also be interpreted
as an LWTA block with shared outgoing weights among the units. A comparison of the 3
activation functions is shown in Figure 1.

In each of the three cases, there is a local gating mechanism which allows non-zero activations
(and errors during training) to propagate only through part of the network, i.e. a subnetwork.
Consider the activation of a neural network with ReLUs in a single hidden layer. For each
input pattern, the subset of units with non-zero activations in the hidden layer form a
subnetwork, and an examination of the subnetworks activated for several examples shows
that a large number of di�erent subnetworks are activated (Figure 2). The result of training
the network can interpreted in the following way: when training a single network with a local
gating mechanism, a large number of linear subnetworks are trained on the dataset such
that di�erent examples are gated to di�erent subnetworks, each getting trained to produce
the desired output. At test time, the system generalizes in the sense that the appropriate
subnetwork for a given example is activated.

1 In our terminology, the terms unit and block correspond to the terms �lter and units in [2].
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Figure 3: 2-D visualization of submasks from the penultimate layer of a 3 hidden layer
network with ReLUs on the MNIST test set. (a) shows the submasks from anuntrained
network layer which lacks any discernable structure. (b) shows submasks from a trained
network layer, showing clearly demarcated clusters relevant to the supervised learning task.
`Mistakes' made by the network can also be observed, such as mistaking '4's for '9's.

3 Subnetwork Analysis

This section investigates how the model of models that is implemented though local compe-
tition self-organizes due to training. In order to visualize the organization of subnetworks as
a result of training, they are encoded as bit strings calledsubmasks. For the input pattern i ,
the submasksi 2 f 0; 1gu , where u is the number of units in the full network, represents the
corresponding subnetwork by having a 0 in positionj , j = 1 ::u, if the corresponding unit
has zero activation, and 1 otherwise. The submasks uniquely and compactly encode each
subnetwork in a format that is amenable to analysis through clustering, and, as we show in
Section 4.2, facilitates e�cient data retrieval.

In what follows, the subnetworks that emerge during training are �rst visualized using the
t-SNE [9] algorithm. This dimensionality reduction technique enables a good visualization
of the relationship between submasks for several examples in a dataset by preserving the
local structure. Later in this section, we examine the evolution of subnetworks during
training, and show that the submasks obtained from a trained network can directly be used
for classi�cation using a simple nearest neighbors approach. All experiments in this section
are performed on the MNIST [10] dataset. This familiar dataset was chosen because it is
relatively easy, and therefore provides a tractable setting in which to verify the repeatability
of our results. Larger, more interesting datasets are used in section 4 to demonstrate the
utility of techniques developed in this section for classi�cation and retrieval.

3.1 Visualization through Dimensionality Reduction

For visualizing the relationship between submasks for a large number of input patterns,
we trained multiple networks with di�erent activation functions on the MNIST training set,
stopping when the error on a validation set did not improve. The submasks for the entire test
set (10K examples) were then extracted and visualized using t-SNE. Since the competition
between subnetworks is local and not global, subsets of units in deeper (closer to the output)
layers are activated based on information extracted in the shallow layers. Therefore, like
unit activations, submasks from deeper layers are expected to be better related to the task
since deeper layers code for higher level abstractions. For this reason, we use only submasks
extracted from the penultimate network layers in this paper, which considerably reduces the
size of submasks to consider.

Figure 3b shows a 2D visualization of the submasks from a 3 hidden layer ReL network.
Each submask is a bitstring of length 1000 (the size of the network's penultimate layer).
Ten distinct clusters are present corresponding to the ten MNIST classes. It is remarkable
that, irrespective of the actual activation values, the subnetworks which are active for the
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Figure 4: The plot shows mean of the fraction
of examples (total 10K) for which units in the
layer �ip (turn from being active to inactive or
vice-versa) after every pass through the training
set. The units �ip for upto 20% of the examples
on average in the �rst few epochs, but quickly
settle down to less than 5%.

Network No. test errors
Softmax kNN

ReL (no dropout) 161 158
LWTA (dropout) 142 154
Maxout (dropout) 116 131

Table 1: Some examples of classi�ca-
tion results on the permutation invari-
ant MNIST test set using softmax layer
outputs vs. kNN on the submasks. All
submasks are extracted from the penulti-
mate layer. kNN results are close to the
softmax results in each case. The max-
out network was additionally trained on
the validation set. Results vary slightly
across experimental runs and were not
cherry-picked for reporting.

testing examples can be used to visually predict class memberships based on their similarity
to each other. The visualization con�rms that the subnetworks active for examples of the
same class are much more similar to each other compared to the ones activated for the
examples of di�erent classes.

Visualization of submasks from the same layer of a randomly initialized network does not
show any structure (Figure 3a), but we observed some structure for the untrained �rst
hidden layer (Appendix A). For trained networks, similar clustering is observed in the sub-
masks from shallow layers in the network, though the clusters appear to be less separated
and tight. The visualization also shows many instances where the network makes mistakes.
The submasks for some examples lie in the cluster of submasks for the wrong class, indicat-
ing that the `wrong' subnetwork was selected for these examples. The experiments in the
next sections show that the organization of subnetworks is indicative of the classi�cation
performance of the full network.

Other locally competitive activation functions such as LWTA and maxout result in similar
clustering of submasks (visualizations included in Appendix A). For LWTA layers, the
submasks can be directly constructed from the activations because there is no subsampling
when going from presynaptic to postsynaptic activations, and it is reasonable to expect
a subnetwork organization similar to that of ReL layers. Indeed, in a limited qualitative
analysis, it has been shown previously [3] that in trained LWTA nets there are more units in
common between subnetworks for examples of the same class than those for di�erent class
examples.

For maxout layers, the situation is trickier at a �rst glance. The unit activations get pooled
before being propagated to the next layer, so it is possible that the maximum activation value
plays a much more important role than the identity of the winning units. However, using
the same basic principle of credit assignment to subnetworks, we can construct submasks
from maxout layers by binarizing the unit activations such that only the units producing the
maximum activation are represented by a 1. Separation of subnetworks is necessary to gain
the advantages of local competition during learning, and the visualization of the generated
submasks produces results similar to those for ReLU and LWTA (included in Appendix A).

3.2 Behavior during Training

In order to measure how the subnetworks evolve over the course of training, the submasks
of each sample in the training set were recorded at each epoch. Figure 4 characterizes the
change in the subnets over time by counting the number of input patterns for which a unit
�ips from being on to being o�, or vice-versa, from one epoch to the next. The curve in the
�gure shows the fraction of patterns for which an inter-epoch �ip occurred, averaged across
all units in the network. Higher values indicate that the assignment of subnets to patterns is
not stable. The batch size for this experiment was 100, which means that each pass over the
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training set consists of 500 weight updates. For the run shown, the average fraction of �ips
starts at 0.2, but falls quickly below 0.05 and keeps falling as training proceeds, indicating
that, as training proceeds, the assignment of subnetworks to individual examples stabilizes
quickly. After a brief ( � 3 epochs) transient period, a �ne-tuning period follows where the
selected subnetworks keep getting trained on their corresponding examples.

3.3 Classi�cation/Retrieval using Submasks

Since the visualization of submasks for the test set shows task-relevant structure, it is natural
to ask: how well can the submask represent the data that produced it? If the submasks for
similar examples are similar, perhaps they can be used as data descriptors for tasks such
as similarity-based retrieval. Sparse binary codes enable e�cient storage and retrieval for
large and complex datasets due to which learning to produce them is an active research
area [11, 12, 13]. This would make representative submasks very attractive since no explicit
training for retrieval would be required to generate them.

To evaluate if examples producing similar binary codes are indeed similar, we train locally
competitive networks for classi�cation and use a simplek nearest neighbors (kNN) algorithm
for classifying data using the generated submasks. This approach is a simple way to examine
the amount of information contained in the submasks (without utilizing the actual activation
values). We are currently doing further experiments using submasks in a more conventional
retrieval setting.

We trained networks with fully connected layers on the MNIST training set, and selected
the value of k with the lowest validation error to perform classi�cation on the test set.
Results are shown in Table 1. In each case, thekNN classi�cation results are close to the
classi�cation result obtained using the network's softmax layer. If we use the (non-pooled)
unit activations from the maxout network instead of submasks for kNN classi�cation, we
obtain 121 errors.

Submasks can also be obtained from convolutional layers. Using a convolutional maxout
network, we obtained 52 errors on the MNIST test set when we reproduced the model from
[2]. Since the penultimate layer in this model is convolutional, the submasks were con-
structed using the presynaptic unit activations from this layer for all convolutional maps.
Visualization of these submasks showed similar structure to that obtained from fully con-
nected layers,kNN classi�cation on the submasks resulted in 65 errors. As seen before, for
a well-trained network the kNN performance is close to the performance of the network's
softmax layer.

3.4 E�ect of Dropout

The dropout [8] regularization technique has proven to be very useful and e�cient at improv-
ing generalization for large models, and is often used in combination with locally competitive
activation functions [2, 4, 5]. We found that networks which were trained with dropout (and
thus produced lower test set error) also yielded better submasks in terms ofkNN classi�-
cation performance. To observe the e�ect of dropout in more detail, we trained a 3 hidden
layer network with 800 ReLUs in each hidden layer without dropout on MNIST starting
from 5 di�erent initializations until the validation set error did not improve. The networks
were then trained again from the same initialization with dropout until the validation error
matched or fell below the lowest validation error from the non-dropout case. In both cases,
minibatch gradient descent with momentum was used for training the networks. A compar-
ison of kNN classi�cation error for the dropout and non-dropout cases showed that when
the validation errors are similar, the organization of subnetworks is not signi�cantly better
or worse.

This supports the interpretation of dropout as a regularization technique which prevents
�co-adaptation of feature detectors� (units) [8], leading to better representation of data by
the subnetworks. If dropout training is stopped at a point when validation error is similar
to a no-dropout network, the submasks from both cases give similar results, but as dropout
improves generalization (lowers validation set error), the organization of subnetworks also
improves. Another way to look at this e�ect can be that dropout improves generalization
by injecting noise in the organization of subnetworks, making them more robust. Due to
this e�ect of dropout, the remaining results and visualizations in this paper are all derived
from networks trained with dropout.
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Figure 5: 2-D visualizations of the submasks from the penultimate layer of the trained
maxout networks reported in [2]. (a) The CIFAR10 test set. The 10-cluster structure
is visible, although the clusters are not as well separated as in the case of MNIST. This
corresponds to the higher error rates obtained using bothkNN and the network's output
layer. (b) The CIFAR100 test set. This is a more di�cult task, and it is di�cult to visualize
any dataset with 100 classes, but several clusters are still visible. The separation between
clusters is much worse, which is re�ected in the high classi�cation error obtained.

Dataset Softmax kNN (activations) kNN (submasks)
CIFAR-10 9.61% 9.79% 11.19%
CIFAR-100 34.54% 41.22% 42.97%

Table 2: Classi�cation results on CIFAR datasets comparing network performance,kNN on
continuous activation values, andkNN on binary submasks.

4 Experimental Results

The following experiments apply the methods described in the previous section to more
challenging benchmark problems: CIFAR-10, CIFAR-100, and ImageNet. For the CIFAR
experiments, we used the models described in [2] since they use locally competitive activa-
tions (maxout), are trained with dropout, and good hyperparameter settings for them are
available [14]. We report the classi�cation error on the test set obtained using the softmax
output layer, as well kNN classi�cation on the penultimate layer unit activations and sub-
masks. The best value ofk is obtained using a validation set, though we found thatk = 5
with distance weighting usually worked well.

4.1 CIFAR-10 & CIFAR-100

CIFAR-10 is a dataset of 32� 32 color images of 10 classes split into a training set of size
50,000 and testing set of size 10,000 (6000 images per class) [15]. CIFAR-100 is a similar
dataset of color images but with 100 classes and 600 images per class, making it more
challenging. The results obtained on these datasets are summarized in Table 2. The models
from [2] for these dataset utilize preprocessing using global contrast normalization and ZCA
whitening as well as data augmentation using translational and horizontal re�ections.

We �nd that when comparing nearest neighbor classi�cation performance with submasks to
unit activation values, we lose an accuracy of 1.4% on the CIFAR-10 dataset, and 1.75% on
the CIFAR-100 dataset. This indicates a good extent of subnetwork organization according
to di�erent classes. Figure 5a shows the 2-D visualization of the test set submasks for
CIFAR-10. Some classes can be seen to have highly representative submasks, while confusion
between classes in the lower half is observed. The clusters of subnetworks are not as well-
separated as in the case of MNIST, re�ecting the relatively worse classi�cation performance.
Submask visualization for CIFAR-100 (Figure 5b) re�ects the high error rate in this dataset.
Although any visualization with 100 classes can be hard to interpret, many small clusters
of submasks can still be observed.
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4.2 ImageNet

The results of kNN classi�cation and t-SNE visualization using submasks on small datasets
of varying complexities show that the submasks contain substantial information about the
data relevant to the task. In this section, the utility of the submasks obtained for a large
convolutional network trained on the ImageNet Large Scale Visual Recognition Challenge
2012 (ILSVRC-2012) [16] dataset is evaluated.

ILSVRC-2012 is a dataset of over a million natural images split into 1000 classes. An
implementation of the network in [4], with some minor di�erences [17], is available publicly.
For the experiments in this section, the penultimate-layer activations obtained using this
model were downloaded from CloudCV [18]. The activations were obtained using the center-
only option, meaning that only the activations for the central, 224� 224 crop of each image
were used. Each image in the training and validation set can thus be represented using a 4096
dimensional submask, which is much more e�cient for storage and retrieval than a �oating-
point vector of activations. Using these submasks, the top-1 and top-5 classi�cation errors
obtained using kNN classi�cation for the validation set are 56.7% and 29.2% . For each
validation set example, 100 examples from the training set with the closest submasks were
weighted by the inverse of the distance, then the classes with top-1 or top-5 weighted sums
were returned as predictions. The results obtained using the network's softmax outputs2
are 42.9% and 19.2%. We only report errors on the validation set since the true labels for
the test set are not public. Our ongoing experiments compare the utility of these submasks
to other recently proposed algorithms which are designed to obtain binary data descriptors.

The classi�cation results show that the performance on this hard classi�cation task is very
good considering the gain in e�ciency obtained from binarization of the activations. For
instance, submasks for the full ILSVRC-2012 training set can be stored in about 0.5 GB.
Moreover, our experiments indicate that submasks obtained from a better trained network
will result in even better performance, since quality of submasks improves as network train-
ing proceeds. In [4], it was �rst shown that the activations from the penultimate layer of
the deep network can be used to retrieve similar images. Since retrieval using real-valued
vectors is ine�cient, it was suggested that the activations can be compressed to binary codes
using auto-encoders. However, the submasks can be directly utilized for quick and e�cient
retrieval of data based on high level similarity. Sample retrieval results for examples from
the ILSVRC-2012 dataset are shown in Figure 6, where the �rst image in each row is a
query image from the validation set and the rest are images from the training set with the
most similar submasks to the query image. The returned images are often very relevant
to the query images, suggesting a new recipe for retrieval tasks in general: one can train a
neural network with locally competitive units on a dataset for a high level task, extract the
submasks from the penultimate layers, and directly utilize them for retrieval.

5 Discussion

Training a system of many networks on a dataset such that they specialize to solve simpler
tasks can be quite di�cult without combining them into a single network with locally com-
petitive units. Without such local competition, one needs to have a global gating mechanism
as in [19]. The training algorithm and the objective function also need modi�cations such
that competition between networks is encouraged. On the other hand, a locally competitive
neural network can behave like a model composed of many subnetworks, and massive shar-
ing of parameters between subnetworks enables better training. Stochastic gradient descent
can be used to minimize the desired loss function, and the implementation is so simple that
one does not even realize that a model of models is being trained.

Figure 4 suggests that during optimization, the subnetworks get organized during an early
transient phase such that subnetworks responding to similar examples have more parameters
in common than those responding to dissimilar examples. This allows for better training of
subnetworks due to reduced interference from dissimilar examples and shared parameters for
similar examples. In the later �ne-tuning phase, the parameters of subnetworks get adjusted
to improve classi�cation and much less re-assignment of subnetworks is needed. In this way,

2The network's error is reported for classi�cation using 5 crops for each image and their horizon-
tal re�ections, not with the center-only option which we used. This improves the network's error
by about 1-2% [4].
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Figure 6: Retrieval based on subnetworks on the ILSVRC-2012 dataset. The �rst image in
each row is the query image; the remaining 5 are the responses retrieved using submasks.

the gating mechanism induced by locally competitive activation functions accomplishes the
purpose of global competition e�ciently and no modi�cations to the error function are
required.

Due to above advantages, networks with such activation functions can usually be trained
faster and better compared to networks with sigmoidal or similar activation functions for
complex pattern recognition tasks. Attempts to increase gradient �ow in ReL networks by
enabling small activation �ow in the negative input region [1, 20] have not improved results.
These �ndings also provide indirect evidence that low interference between subnetworks is a
bene�cial property for training large networks. The nature of organization of subnetworks
is reminiscent of the data manifold hypothesis for classi�cation [21]. Just like data points
of di�erent classes are expected to concentrate along sub-manifolds, we expect that the
organization of subnetworks that respond to the data points re�ects the data manifold
being modeled.

An important take-away from these results is the unifying theme between locally compet-
itive architectures, and its relation to past work on competitive learning. Insights from
past literature on this topic can be utilized to develop improved learning algorithms and
architectures for locally competitive learning. This paper, to the best of our knowledge, is
the �rst to show that simply training a deep network for classi�cation results in binary de-
scriptors that are useful for retrieval. These descriptors are not just results of a thresholding
trick or unique to a particular activation function, but arise as a direct result of the way
the network learns and processes information. Our experiments on datasets of increasing
complexity show that when the network performance (softmax classi�cation) improves, the
performance gap to submask-based retrieval closes. This suggests that in the near future, as
training techniques continue to advance and yield lower errors on larger datasets, submasks
will perform as well as activation values for retrieval and transfer learning tasks. Impor-
tantly, these binary representation will always be far more e�cient for storage and retrieval
than continuous activation vectors.
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A Extra visualizations

(a) Trained LWTA layer. (b) Trained Maxout layer.

Figure 7: 2-D visualization of submasks from the penultimate layer of 3 hidden layer LWTA
and maxout networks on MNIST test set. Organization of submasks into distinct class
speci�c clusters similar to ReL networks is observed.

(a) Untrained 1st LWTA layer. (b) Untrained 1st ReL layer.

Figure 8: 2-D visualization of submasks obtained before training from the 1st (closest to
the input) hidden layer of 3 hidden layer LWTA and ReL networks on MNIST test set.
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